3.669 \(\int \frac{1}{(e \cos (c+d x))^{5/2} (a+i a \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=92 \[ -\frac{2 \cos ^{\frac{5}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d (e \cos (c+d x))^{5/2}}+\frac{4 i \cos ^2(c+d x)}{3 d \left (a^2+i a^2 \tan (c+d x)\right ) (e \cos (c+d x))^{5/2}} \]

[Out]

(-2*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d*(e*Cos[c + d*x])^(5/2)) + (((4*I)/3)*Cos[c + d*x]^2
)/(d*(e*Cos[c + d*x])^(5/2)*(a^2 + I*a^2*Tan[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.14994, antiderivative size = 92, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3515, 3500, 3771, 2641} \[ -\frac{2 \cos ^{\frac{5}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d (e \cos (c+d x))^{5/2}}+\frac{4 i \cos ^2(c+d x)}{3 d \left (a^2+i a^2 \tan (c+d x)\right ) (e \cos (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((e*Cos[c + d*x])^(5/2)*(a + I*a*Tan[c + d*x])^2),x]

[Out]

(-2*Cos[c + d*x]^(5/2)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d*(e*Cos[c + d*x])^(5/2)) + (((4*I)/3)*Cos[c + d*x]^2
)/(d*(e*Cos[c + d*x])^(5/2)*(a^2 + I*a^2*Tan[c + d*x]))

Rule 3515

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(d*Co
s[e + f*x])^m*(d*Sec[e + f*x])^m, Int[(a + b*Tan[e + f*x])^n/(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e,
f, m, n}, x] &&  !IntegerQ[m]

Rule 3500

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*d^2
*(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + 2*n)), x] - Dist[(d^2*(m - 2))/(b^2*(m + 2*n
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{(e \cos (c+d x))^{5/2} (a+i a \tan (c+d x))^2} \, dx &=\frac{\int \frac{(e \sec (c+d x))^{5/2}}{(a+i a \tan (c+d x))^2} \, dx}{(e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\\ &=\frac{4 i \cos ^2(c+d x)}{3 d (e \cos (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )}-\frac{e^2 \int \sqrt{e \sec (c+d x)} \, dx}{3 a^2 (e \cos (c+d x))^{5/2} (e \sec (c+d x))^{5/2}}\\ &=\frac{4 i \cos ^2(c+d x)}{3 d (e \cos (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )}-\frac{\cos ^{\frac{5}{2}}(c+d x) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a^2 (e \cos (c+d x))^{5/2}}\\ &=-\frac{2 \cos ^{\frac{5}{2}}(c+d x) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d (e \cos (c+d x))^{5/2}}+\frac{4 i \cos ^2(c+d x)}{3 d (e \cos (c+d x))^{5/2} \left (a^2+i a^2 \tan (c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.368917, size = 116, normalized size = 1.26 \[ \frac{2 \sqrt{\cos (c+d x)} (\cos (d x)+i \sin (d x))^2 \left (2 \sqrt{\cos (c+d x)} (\sin (c-d x)-i \cos (c-d x))+(\cos (2 c)+i \sin (2 c)) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 a^2 d (\tan (c+d x)-i)^2 (e \cos (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Cos[c + d*x])^(5/2)*(a + I*a*Tan[c + d*x])^2),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*(Cos[d*x] + I*Sin[d*x])^2*(EllipticF[(c + d*x)/2, 2]*(Cos[2*c] + I*Sin[2*c]) + 2*Sqrt[Co
s[c + d*x]]*((-I)*Cos[c - d*x] + Sin[c - d*x])))/(3*a^2*d*(e*Cos[c + d*x])^(5/2)*(-I + Tan[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 2.291, size = 170, normalized size = 1.9 \begin{align*}{\frac{2}{3\,{e}^{2}{a}^{2}d} \left ( 8\,i \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{5}-8\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) -8\,i \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3}+\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,i\sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^2,x)

[Out]

2/3/e^2/a^2/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*(8*I*sin(1/2*d*x+1/2*c)^5-8*sin(1/2*d*x+1/2
*c)^4*cos(1/2*d*x+1/2*c)-8*I*sin(1/2*d*x+1/2*c)^3+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+4*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+2*I*sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{{\left (3 \, a^{2} d e^{3} e^{\left (i \, d x + i \, c\right )}{\rm integral}\left (\frac{2 i \, \sqrt{\frac{1}{2}} \sqrt{e e^{\left (2 i \, d x + 2 i \, c\right )} + e} e^{\left (-\frac{1}{2} i \, d x - \frac{1}{2} i \, c\right )}}{3 \,{\left (a^{2} d e^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d e^{3}\right )}}, x\right ) + 4 i \, \sqrt{\frac{1}{2}} \sqrt{e e^{\left (2 i \, d x + 2 i \, c\right )} + e} e^{\left (-\frac{1}{2} i \, d x - \frac{1}{2} i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{3 \, a^{2} d e^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

1/3*(3*a^2*d*e^3*e^(I*d*x + I*c)*integral(2/3*I*sqrt(1/2)*sqrt(e*e^(2*I*d*x + 2*I*c) + e)*e^(-1/2*I*d*x - 1/2*
I*c)/(a^2*d*e^3*e^(2*I*d*x + 2*I*c) + a^2*d*e^3), x) + 4*I*sqrt(1/2)*sqrt(e*e^(2*I*d*x + 2*I*c) + e)*e^(-1/2*I
*d*x - 1/2*I*c))*e^(-I*d*x - I*c)/(a^2*d*e^3)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**2,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (e \cos \left (d x + c\right )\right )^{\frac{5}{2}}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*cos(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((e*cos(d*x + c))^(5/2)*(I*a*tan(d*x + c) + a)^2), x)